SOME MODELS OF MICROPOLAR VISCOELASTIC MEDIA

A, T, Listrov and Yu. A, Shurinov

Models of viscoelastic micropolar media are constructed which generalize the Poynting~Thomson,
Jeffreys— Lesersic, and Burgers— Mindlin models {2, 3] for the case where the medium has microinertia,

Generalized micropolar Maxwell and Voigt models are considered in [1]. The models discussed can
be used for describing the mechanical behavior of suspensions, colloidal solutions, concretes, etc. The
propagation of small shear disturbance in an unbounded medium is investigated.

Graphs are plotted of the propagation velocity and damping factors of periodic waves as a function
of the frequency of the disturbances for each of the models under consideration. The calculations were
performed on the M-220 computer,

The results obtained permit making a number of conclusions concerning the effect of relaxation and
the elastic aftereffect of the media on the propagation velocity and damping of shear waves in the presence
of microinertia and moment stresses,

1. The theory of linear micropolar viscoelasticity is based on the following equations of conservation
of mass, change of momentum, moment of momentum, and energy for micropolar media [1}:

0"+ (pvg) =0, e+ o (fi+v)==0
Mgy + by -+ 0 — V) =0 (k,1,r=1,2,3) (1.1)
p2 = tgdp + eppbin (0, — V) + MV + Qe - 0k

Here p is the mass density, vi is the velocity vector of a point of the continuum, Wi is a vector char-
acterizing the average angular velocity of rotation of the particles composing a point of the continuum, Yy
is the velocity vector of microrotation of the particle, fk is the mass force vector, gy is the heat flux vector,
I is the mass moment vector, h is the heat source, ¢ is the internal specific energy, j is the average value
of the moment of inertia, tkl and my; are the force and moment stress tensors, respectively, and Eir is
the unit pseudotensor.

In the linear theory the dot over the index denotes a partial derivative with respect to time. The vec-
tors of displacements v, and microrotation ¢y satisfy the following kinematic relations

Vg == Uy, Ve @y, 29 = ey, Uy, 2 = (Vi o+ )

The determining rheological equations of micropolar viscoelasticity for the deviatoric and spherical
parts of the tensors in an operator form [1] are

Pp=Qe, Riy"=S8¢,"+ Tey®, ty= —pdy-t°
Pm=Q¢, Rmy =S+ T, mg=mdy-+my {1.2)
g = — Sﬁkl + e, 3p = =y, 3m =: My

(pk,l = (pékl ’f"‘ P2, 3e= — Epps 35? == (pr,rv By = Uk = Ep1r Pp
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Here P,P’,Q,Q,R,R", S, S, T, T are differential operators of the form

g n n
=3 3 SIA G, o
P:ZPKT’)F’ P’ = ZP;:W{--'-‘, T'EZtka—tk‘ (1.3)
k=0 k=0 k=9

The operator equations for the force and moment stresses follow from (1.2)

Ry + Y5 (P—R) 85 = Y5(Q— 8 —T) e, 04y + Sey + Te

L4 ! ? ? 1 I r ’ (1'4)
R'my + Y (B — R)mpydyy = 15 (Q — 8" — T') 9,85 + S'peps + Ty

We introduce the following notations for the rheological models being considered [3]: N is the New-
ton model, K is the Kelvin—Voigt, M the Maxwell, P the Poynting—Thomson, J the Jeffreys—Lesersic, and
B the Burgers—Mindlin.

The generalized models, taking into account microinertia, asymmetry of the force stress tensor, and
the presence of moment stresses, will be denoted by the same letters with an asterisk, i.e., N*, ..., B¥,

The determining equations of the models N, N* ,..., B, B* are obtained from the general operator
equations (1,4). For this purpose it suffices to limit ourselves ton = 2 in (1.3) and to make appropriate
assumptions concerning the values of the coefficients py, pg's ..., { "

In (1.3) we set
n=2 p=p =r=r" =1,
Po =P =Pa=p) =G =q =g =¢ =0
Under these assumptions Egs. (1.4) will take the form
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m;ck = q’(P.k,k (1 5)

2
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=— % (52 ~F 8") radia + 88 Pk + b Pk — 5 (81 — I’ — @1) @rrdi

[ R P i ’ ’ ’ S ’ . .

+ 81 Piet + 8 Prr — 5 (S0 L) PrpOna + S0'Pryp A Lo’ Pres ik = Gaie s

M = q1'Prre
Here 1y, 1% ...sty, t,! are constant coefficients characterizing the elastic and viscous properties of
the media,

Relationships (1.5) contain all determining equations of the models considered.

The determining equations for any of the models N, N*, ..., B, B* can be obtained formally from (1.5)
by means of Table 1.

In the row of this table the plus signs indicate those coefficients which should be retained in Egs, (1.5)
for the given model,

In this case, for models N, K, M, P, J, and B the nonzero coefficients next to each other in the table
should be considered equal and, furthermore, we set ¢,. = 0 in (1.2).

2. We will consider periodic shear waves in an unbounded medium

u=[u(z, ), 0,0, ¢=100,0, g5(25, O], fo=1, =0
uy= % exp Ui (kz, + ot)l, k=w/lc+iE
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TABLE 1
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Fig. 1

Here k is the wave number, ¢ is the propagative velocity of the wave, £ is the damping factor, and w
is the angular frequency.

The dispersion equation for disturbances in micropolar media has the form

A A AR L (ipe2d 2A; — 4 Ay Ae— 434444
+ipjotA 4 346) K2 4 200%4.14 Ad— ofjetd 4 = 0,
Ay =1 — iory — oy
Ay =1 —ior; — o, Ay = —ot +i(®, — t), (2.1)
Ay = —o0s + (0%, — )
Ay = 0% (L~ s9) — (to — o) + i (; —s9),
Ay = —ot] +ie® — &)

The following values of the coefficients were used in the SI system in the numerical solution of Eq.
(2.1) on the M-220 computer:

rp=210% 1’ =10 s =4, s =16, £, =107 p=1
ro =1t =105, fi =1t =s=10%, t =& =r' =107,
j=5.10"
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The graphs of the functions ¢(w) and £(w) for models N, N¥, ..., B, B¥ are given in Fig. 1.

The values of w are indicated on the x axis and the values of the damping factors and propagation
velocities of the shear waves on the y axis.

The propagation velocity and damping factor of an ordinary shear wave for models N, K, M, P, J,and
B are denoted in the graphs respectively by the letters ¢ and £.

We note that two shear waves exist for micropolar media [4]: an ordinary shear wave which has a
propagation velocity ¢, and damping factor £; and a shear wave due to the presence of moment stresses.
The latter has propagation velocity ¢, and damping factor £,.

The graphs of cl{w), £(w) for model N and graphs of c;(w), &;(w), cy(w), £)(w) for the generalized model
N* are shown in the figure with the letter N, The graphs with the letters M, J, B, K, and P refer respective-
ly to the ordinary and generalized models of Maxwell, Jeffreys— Leversic, Burgers— Mindlin, Kelvin—Voigt,
and Poynting—Thomson,

We see from Fig, 1 that for all the micropolar media the second shear wave has a large damping
factor &,.

It follows from the figure with letter N that in micropolar fluid N* the propagation velocity of the
shear wave ¢, in the frequency range considered is greater than the propagation velocity ¢, of the ordinary
shear wave,

We see from a comparison of the graphs that the presence of such properties as stress relaxation and
elastic aftereffect for media M*, J*, B*, and K* is related to a substantial decrease of the propagation
velocity of wave c,. In this case both the elastic aftereffect and stress relaxation of the media have little
effect on the damping factor £,.

We note also that for all models consideration of microinertia and moment stresses leads to some
decrease of the propagation velocity of the ordinary shear wave and to an increase of its damping factor,
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